Что такое термопара, принцип действия, основные виды и типы

Введение

Действие термопары основано на эффекте термоэлектричества, открытом немецким физиком Т. Зеебеком в 1821 году . Если соединить два провода из разнородных металлов, то между их концами возникнет электродвижущая сила величиной порядка милливольта, с температурным коэффициентом около 50 мкВ на градус. Такие соединения называются термопарами и используются для измерения температуры в диапазоне от -270 до +2500 градусов Цельсия. Зависимость напряжения от температуры нелинейна, однако в небольшом диапазоне температур термо-э.д.с. пропорциональна разности температур спаев Т1 и Т2:

ЭДС = S(Т2 — Т1), (1)

где S- коэффициент Зеебека.

Принцип действия термопары иллюстрируется следующим рисунком (рис.1). Если температуры спаев различаются, и температура одного из спаев известна (например, измерена с помощью термометра или терморезистора), то температуру второго спая (т.е. измеряемую температуру) можно найти из уравнения (1). Для того, чтобы упростить процесс измерения температуры с помощью термопары, температуру холодного спая можно застабилизировать например, опустив холодный спай в ванночку со льдом. Однако применение компьютера совместно с системой сбора данных делает эту процедуру излишней, поскольку температура холодного спая изменяется в небольших пределах, и поэтому применение даже недорогого терморезисторного датчика позволяет получить хорошие результаты с помощью программной компенсации температуры холодного спая.

Рис.1. Принцип действия термопары Рис.2. Подключение вольтметра с помощью третьего металла

При подключении к термопаре внешней электрической цепи появляются новые контакты разнородных металлов, которые вводят в измерительную цепь дополнительные ЭДС. Однако можно видеть (рис.2), что, например термоЭДС двух контактов медь-константан включены встречно и поэтому компенсируют друг-друга. Это позволяет использовать термопару на большом удалении от измерителя напряжения, соединив их обычными медными проводами.

Принцип действия термопары

Эти устройства работают согласно правилу Зеебека. Если определенный проводник будет подвергаться воздействию, тогда его сопротивление и напряжение будет изменяться. Чтобы измерить это напряжение необходимо подключить гибкий провод к «горячему» концу термопары. Этот гибкий провод может стать настоящим градиентом температуры и разработать собственное напряжение, которое в дальнейшем будет противостоять текущему напряжению.

Во время использования разнородных сплавов для замыкания цепи, создается новая цепь, в которой два конца смогут генерировать напряжение. В дальнейшем его можно будет измерить. Узнайте, как работает тензодатчик.

Напряжение будет генерироваться не на стыке двух металлов, а вдоль длины двух разнородных металлов. Обе длины термопары будут испытывать одинаковый температурный режим. Конечный результат можно считать результатом разности температур между термопарой и спаем. Если соединение будет выполнено некачественно, тогда соответственно в этом случае может образоваться погрешность. Особенно в высокой точности будет нуждаться мультиметр с термопарой и разнообразные производственные датчики.

Быстродействие измерения

Быстродействие обуславливается способностью первичного преобразователя быстро реагировать на скачки температуры и следующим за ними потоком входных сигналов измерительного прибора.

Факторы, увеличивающие быстродействие:

  1. Правильная установка и расчет длины первичного преобразователя;
  2. При использовании преобразователя с защитной гильзой необходимо уменьшить массу узла, подобрав меньший диаметр гильз;
  3. Сведение к минимуму воздушного зазора между первичным преобразователем и защитной гильзой;
  4. Использование подпружиненного первичного преобразователя и заполнения пустот в гильзе теплопроводящим наполнителем;
  5. Быстро движущаяся среда или среда с большей плотностью (жидкость).

Преимущества термопары

Почему за столь долгую историю эксплуатации термопары не были вытеснены более совершенными и современными датчиками измерения температуры? Да по той простой причине, что до сих пор ей не может составить конкуренцию ни один другой прибор.

Во-первых, термопары стоят относительно дешево. Хотя цены могут колебаться в широком диапазоне в результате применения тех или иных защитных элементов и поверхностей, соединителей и разъемов.

Во-вторых, термопары отличаются неприхотливостью и надежностью, что позволяет успешно эксплуатировать их в агрессивных температурных и химических средах. Такие устройства устанавливаются даже в газовые котлы. Принцип работы термопары всегда остается неизменным, вне зависимости от условий эксплуатации. Далеко не каждый датчик другого типа сможет выдержать подобное воздействие.

Технология изготовления и производства термопар является простой и легко реализуется на практике. Грубо говоря – достаточно лишь скрутить или сварить концы проволок из разных металлических материалов.

Еще одна положительная характеристика – точность проводимых измерений и мизерная погрешность (всего 1 градус). Данной точности более чем достаточно для нужд промышленного производства, да и для научных исследований.

Эффект Зеебека

На данном физическом явлении основан принцип работы термопары. Суть заключается в следующем: если соединить между собой два проводника из разных материалов (иногда используются полупроводники), то по такому электрическому контуру будет циркулировать ток.

Таким образом, если нагревать и охлаждать спай проводников, то стрелка потенциометра будет колебаться. Засечь ток также может позволить и гальванометр, подключенный в цепь.

В том случае, если проводники выполнены из одного и того же материала, то электродвижущая сила не будет возникать, соответственно, нельзя будет измерить температуру.

Недостатки термопары

Недостатков у термопары не так много, в особенности если сравнивать с ближайшими конкурентами (температурными датчиками других типов), но все же они есть, и было бы несправедливо о них умолчать.

Так, разность потенциала измеряется в милливольтах. Поэтому необходимо применять весьма чувствительные потенциометры. А если учесть, что не всегда приборы учета можно разместить в непосредственной близости от места сбора экспериментальных данных, то приходится применять некие усилители. Это доставляет ряд неудобств и приводит к лишним затратам при организации и подготовке производства.

Конструкции термопар

Сварка проводов, изготовленных из разных металлов, выполняется таким образом, чтобы получилось небольшое по размеру соединение — спай. Провода можно просто скрутить, однако такое соединение ненадежно и имеет большой уровень шумов. Сварку металлов иногда заменяют пайкой, однако верхний температурный диапазон такой термопары ограничен температуров плавления припоя. При температурах, близких к температуре плавления припоя, контакт разнородных металлов в термопаре может нарушаться. Термопары, изготвленные сваркой, выдерживают более высокие температуры, однако химический состав термопары и структура металла в месте сварки могут нарушаться, что приводит к разбросу температурных коэффициентов термопар. Под действием высоких температур может произойти раскалибровка термопары вследствие изменения диффуции компонентов металла в месте сварки. В таких случаях термопару следует откалибровать заново или заменить.

Промышленностью выпускаются термопары трех различных конструкций: с открытым спаем, с изолированным незаземленным спаем и с заземленным спаем. Термопары с открытым контактом имеют малую постоянную времени, но плохую коррозионную стойкость. Термопары двух других типов применимы для измерения температуры в агрессивных средах. В таблице 3 приведены типы термопар и их маркировка в соответствии со стандартом ANSI.

Таблица 3

Обозначение,
ANSI

Тип по
ГОСТ Р 8.585-2001

Материал
положительного
электрода

Материал
отрицательного
электрода

Максимальная погрешность

Максимальная
температура

Температурный
коэффициент
при 20 град
Цельсия

Выходное
напряжение
при 100 град.
Цельсия

J

ТЖК

Железо, Fe

Константан, Cu-Ni

2,2 oС или 0,75%

760

51,45

5,268

K

TXA

Хромель, Cr-Ni

Алюмель, Ni-Al

2,2 oС или 0,75% выше 0 oС, 2,2 oС или 2% ниже

1370

40,28

4,095

T

ТМК

Медь, Cu

Константан, Cu-Ni

1 oС или 0,75% выше 0 oС, 1 oС или 1,5% ниже

400

40,28

4,277

E

ТХКн

Хромель, Cr-Ni

Константан, Cu-Ni

1,7 oС или 0,5% выше 0 oС, 1,7 oС или 1% ниже

1000

60,48

6,317

N

ТНН

Никросил, Ni-Cr-Si

Нисил, Ni-Si-Mg

2,2 oС или 0,75% выше 0 oС, 2,2 oС или 2% ниже

R

ТПП

Платина-Родий
(13% Rh)

Платина Pt

1,5 oС или 0,25%

1750

5,8

0,647

S

ТПП

Платина-Родий
(10% Rh)

Платина Pt

1,5 oС или 0,25%

1750

5,88

0,645

B

ТПР

Платина-Родий
(30% Rh)

Платина-Родий
(6% Rh)

0,5% выше +800 oС

1800

0,033

L

TXK

Хромель-Копель

900

C

ТВР,A
(A-1, A-2, A-3)

Вольфрам-Рений,
W-Re (5% Re)

Вольфрам-Рений,
W-Re (26% Re)

4,5 oС до _425 oС, 1% до 2320 oС

Особенностью термопар по сравнению с другими типами термодатчиков является то, что температурный коэффициент зависит только от материала, из которого изготовлена термопара и не зависит от ее конструкции (термопары выполняются в форме щупа, проклодки, бронированного зонда, и т.п.). Это делает термопары взаимозаменяемыми без дополнительной подстройки.

При высоких температурах сопротивление материала изоляции термопары уменьшается и токи утечки через изоляцию могут вносить погрешность в результат измерения. Погрешность термопары возрастает также при попадании жидкости внутрь термопары, вследствие чего возникает гальванический эффект.

Монтаж термопары

Импортные термопары необходимо устанавливать также, как и отечественные. Их установка и замена практически ничем не отличается. Для установки необходимо выполнить следующие этапы:

  1. Открутить гайку подключения внутри резьбового соединения к газовой линии.
  2. Отвинтить компенсационный винт, который держит трубку на месте.
  3. Вставить новую термопару в отверстие кронштейна. Также убедитесь, что система будет подключена к газовому или электрическому снабжению.
  4. Следует нажать на гайку для резьбового соединения, где медный провод будет подключаться к газовой линии. Убедитесь в том, что соединение будет чистым, а также сухим.
  5. Плотно закрепите соединение и не перетягивайте его. При необходимости также можете установить керамический уплотнитель.

Контроллер плиты необходимо вмонтировать не слишком сильно.

Во время установки медная и стальная труба подачи и отвода топлива должна быть направлена вниз. В конструкции концевой выключатель будет располагаться под автоматом контроля безопасности на печи. Это устройство также способно отключать вентилятор, если температура понизится до определенного уровня. Если вентилятор работает постоянно, тогда выключатель нуждается в корректировке. Сначала вам необходимо проверить термостат. Если он будет включен, тогда его следует поставить в автоматический режим.

На сегодняшний день любая система контроля требуется корректировки. Если вы не можете выполнить корректировку самостоятельно, тогда лучше обратиться к специалистам. Изготовление термопары осуществляется на специализированных заводах. Именно поэтому выполнить ремонт можно будет только в специализированных дилерских центрах. Стоимость термопары в среднем составляет от 3 до 6 долларов. Конечно, цена будет зависеть от типа продукции, которую вы желаете приобрести.

https://youtube.com/watch?v=YN5VryJaanM

Теперь вы точно знаете устройство и принцип работы термопары. Надеемся, что эта информация была полезной и интересной.

Устройство и принцип действия термопары

Действительно, постоянно находиться в зоне открытого пламени может далеко не каждый материал. Термоэлемент же изготовлен из металла, точнее, из нескольких металлов, поэтому высокой температуры не боится. При работе газовой котельной установки без него никак не обойтись, выход из строя термопары означает полную остановку агрегата и немедленный ремонт. Все дело в том, что термоэлемент работает совместно с электромагнитным отсекающим клапаном, перекрывающим вход в топливный тракт. Стоит только этой детали выйти из строя, как клапан закроется, подача топлива прекратится и горелочное устройство потухнет.

Чтобы лучше понять принцип работы термопары газового котла, стоит рассмотреть схему, представленную на рисунке.

Схема термопары

В основе этого принципа лежит следующее физическое явление: если надежно соединить между собой 2 разнородных металла, а потом место соединения нагревать, то на холодных концах этого спая появится разница потенциалов, то есть, напряжение. А при подключении к ним измерительного прибора цепь замкнется и возникнет постоянный электрический ток. Напряжение будет совсем небольшим, но этого вполне достаточно, чтобы в чувствительной катушке электромагнитного клапана возникла индукция и он открылся, позволяя топливу пройти к запальнику.

Для справки. Некоторые современные электромагнитные клапаны настолько чувствительны, что остаются открытыми, пока напряжение на входе не станет ниже 20 мВ. Термоэлемент в обычном рабочем режиме вырабатывает напряжение порядка 40—50 мВ.

Соответственно, устройство термопары газового котла основано на описанном явлении, носящем название эффекта Зеебека. Две детали из различных металлов прочно соединяются между собой в одной или нескольких точках, при этом качество соединения играет большую роль. Оно влияет на рабочие параметры элемента и долговечность его эксплуатации. Место соединения и будет той самой рабочей частью, помещаемой в зону открытого огня.

Поскольку для изготовления термоэлементов применяется множество различных пар металлов, не вдаваясь в подробности, отметим, что в термопаре для газового котла используется пара хромель – алюминий. К холодным концам этих металлов приварены проводники, заключенные в защитную оболочку. Второй конец проводников вставляется в соответствующее гнездо автоматики агрегата и закрепляется с помощью зажимной гайки.

В процессе розжига запальника и горелки газового котла для подачи топлива мы открываем электромагнитный клапан вручную, нажимая на его шток. Газ попадает на запальник и поджигается, а термопара находится рядом и нагревается от его пламени. Спустя 10—30 сек кнопку можно отпускать, так как термоэлемент уже начал вырабатывать напряжение, удерживающее шток клапана в открытом состоянии.

Схема подключения термопары

Наиболее распространенными способами подключения измерительных приборов к термопарам являются так называемый простой способ, а также дифференцированный. Суть первого метода заключается в следующем: прибор (потенциометр или гальванометр) напрямую соединяется с двумя проводниками. При дифференцированном методе спаивается не одни, а оба конца проводников, при этом один из электродов «разрывается» измерительным прибором.

Нельзя не упомянуть и о так называемом дистанционном способе подключения термопары. Принцип работы остается неизменным. Разница лишь в том, что в цепь добавляются удлинительные провода. Для этих целей не подойдет обычный медный шнур, так как компенсационные провода в обязательном порядке должны выполняться из тех же материалов, что и проводники термопары.

Измерительная цепь

Основная проблема построения измерительной схемы на базе термопары связана с ее низким выходным напряжением (около 50 мкВ на градус), поскольку синфазные помехи промышленной частоты 50 Гц и радиопомехи, наведенные на элементах измерительной цепи, намного превышают это значение

Поэтому очень важно хорошо экранировать провода, идущие от термопары к системе сбора данных. Термопара должна быть подключена витой парой проводов, помещенных в общий экран

Если провод, идущий к термопаре, достаточно длинный (несколько сотен метров), то наилучшие результаты получаются, если предварительно усилить сигнал термопары усилителем RL-4DA200 из серии RealLab! и уже усиленный сигнал передавать на большое расстояние. При этом электромагнитные наводки становятся малы по сравнению с усиленным сигналом от термопары, что увеличивает достоверность получаемых результатов. Поэтому усиление должно быть выбрано таким, чтобы верхний предел измерения температуры был равен верхнему пределу выходного напряжения усилителя, то есть 10 В.

Для улучшения отношения сигнал/помеха при значительном удалении термодатчика от системы сбора данных можно использовать также фильтр нижних частот третьего порядка с полосой 5 Гц, типа RL-8F3 из серии RealLab!, который позволяет существенно ослабить помеху частотой 50 Гц. На частоте 50 Гц уровень помехи ослабляется на 60 дБ. Фильтр RL-4F3 устанавливается перед системой ввода данных, т.е. перед мультиплексором. Поэтому инерционность фильтра не требует уменьшения скорости опроса датчиков. При использовании модулей серии NL фильтр использовать не нужно, т.к. он имеется во входных цепях модуля NL-8TI.

Обычно используют два способа компенсации температуры холодного спая. Первый способ состоит в том, что провода, идущие от термопары к системе сбора данных, выполняют термопарным проводом, т.е. проводом, изготовленным из того же материала, что и электроды термпары. При этом «холодные спаи» всех термопар (если их несколько) оказываются расположенными в одном месте и температуры всех «холодных спаев» одинаковы. В этом случае можно использовать один общий термодатчик, измеряющий термпературу холодных спаев. Этот способ удобен, когда все термопары расположены недалеко друг от друга и от системы сбора данных.

Второй способ состоит в том, что для каждой термопары используют свой измеритель температуры холодного спая. Это позволяет использовать обычные провода для подсоединения термпары к системе сбора данных, однако одновременно с ними необходимо подвести и сигнал от термопреобразователя, который регистрирует температуру холодного спая. Такой способ удобен, когда термопары пространственно разнесены одна от другой на большое расстояние.

Если термопара в рабочем режиме находится под высоким напряжением или может случайно оказаться под напряженим, необходимо использовать изолирующий усилитель RL-1IDA200.

Особенности конструкции

Термопара – это специальное устройство, которое предназначается для измерения температуры. Конструкция будет состоять из двух разнородных проводников, которые в дальнейшем будут между собою контактировать в одной или нескольких точках. Когда на одном участков этих проводников измениться температура, тогда будет создаваться напряжение. Многие специалисты достаточно часто используют термопары для контроля температуры в разнообразной среде и для конвертации температуры в энергию.

Коммерческий преобразователь будет иметь доступную стоимость. Он будет иметь стандартные разъемы и позволяет измерять разнообразный спектр температуры. Основным отличием от других устройств для измерения температуры считается то, что они имеют автономное питание и не требуют внешнего фактора возбуждения. Основным ограничением во время работы с этим устройством считается его точность.

Основные параметры этого прибора на сегодняшний день будут зависеть именно от материала, из которого он выполнен. Если узел создан из разнородных материалов, тогда он позволяет производитель электрический потенциал. Термопары для практического измерения температуры чаще всего выполнены из определенного материала. Различные сплавы чаще всего могут использовать для разнообразных температурных диапазонов. Если вам необходимо купить термопару, тогда сначала проконсультируйтесь с продавцом.

Существуют также и разные типы термопары. Многие приспособления считаются полностью стандартизированными. Многие производственные компании на сегодняшний день используют электронные методы холодного спая для корректировки изменения температуры на клеммах устройства. Благодаря этому им удалось значительно повысить точность.

Применение термопары считается достаточно широким. Их могут использовать в следующих областях:

  • Науке.
  • Промышленности.
  • Для измерения температуры в печах или котлах.
  • Частных домах или офисах.
  • Также эти приборы способны заменить термостаты АОГВ в газовых отопительных приборах.

Принцип работы

Работа любой термопары основывается на термоэлектрическом эффекте, который был открыт Т.И. Зеебеком в далёком 1821 году. Данный эффект заключается в том, что если последовательно соединить друг с другом два разнородных металлических проводника, образуя таким образом замкнутую электрическую цепь, и в одном месте соединения проводников произвести нагрев, то в цепи возникает электродвижущая сила (ЭДС). Данную электродвижущую силу называют термо-ЭДС. Под действием термо-ЭДС в замкнутой цепи начинает протекать электрический ток.

Как работает термопара.

Место нагрева обычно называют горячим спаем. Место, где нет нагрева – холодный спай. Если в разрыв цепи подключить гальванометр или микровольтметр, то можно измерить величину термо-ЭДС, которая будет составлять несколько мили- или микровольт. Значение термо-ЭДС будет зависеть от величины нагрева в месте соединения проводников и от величины температуры в месте соединения проводников, где нагрев не происходит. Т.е. значение термо-ЭДС зависит от разности температур между холодным и горячим спаем. Также термо-ЭДС зависит и от рода самих проводников.

Будет интересно Чему равна электроемкость конденсатора?

Таким образом, если место соединения разнородных проводников термопары нагреть, то между несоединёнными (свободными) концами проводников возникнет разность потенциалов, которую можно измерить электроизмерительным прибором. Благодаря современным преобразователям возникающую разность потенциалов можно преобразовать в определённое цифровое значение, т.е. вполне реально узнать значение температуры нагрева в месте соединения проводников термопары. Для того чтобы измерения были точными, температура холодного спая должна быть неизменной. Т.к. это не всегда возможно, используются специальные компенсационные схемы для компенсации температуры холодного спая.

Устройство термопары.

Конструкция устройства

Современные термопары изготавливаются различной формы и длины. По конструктивному исполнению их можно разделить на две группы:

  • бескорпусные термопары;
  • термопары с защитным кожухом.

Первые представляют собой изделие, у которого место соединения двух проводников не закрыто и не защищено от внешних воздействий. Такое исполнение позволяет достичь быстрого времени измерения температуры и низкой инертности. Второй тип термопары выпускается в виде зонда. Зонд представляет собой металлическую трубку с внутренним изолятором, выдерживающим высокую температуру. Внутрь зонда помещается термоэлектрический элемент термопары. Благодаря такой конструкции термоэлемент защищён от влияния агрессивных сред различных технологических процессов.

Термопара типа J.

Холодный спай

Холодный спай часто представляет собой точку, где свободные концы проводов термопары подсоединяются к измерительному прибору. В силу того, что измерительный прибор в цепи термопары в действительности измеряет разность напряжения между двумя спаями, то напряжение холодного спая должно поддерживаться на неизменном уровне, насколько это возможно. Поддерживая напряжение на холодном спае на неизменном уровне мы тем самым гарантируем, что отклонение в показаниях измерительного прибора свидетельствует о изменении температуры на рабочем спае.

Если температура вокруг холодного спая меняется, то величина напряжения на холодном спае также изменится. В результате изменится напряжение на холодном спае. И как следствие разница в напряжении на двух спаях тоже изменится, что в конечном итоге приведет к неточным показаниям температуры. Для того, чтобы сохранить температуру на холодном спае на неизменном уровне во многих термопарах используются компенсирующие резисторы. Резистор находится в том же месте, что и холодный спай, так что температура воздействует на спай и резистор одновременно.

Термопара газовой плиты.

Рабочий спай термопары (горячий)

Рабочий спай — это спай, который подвержен воздействию технологического процесса, чья температура измеряется. Ввиду того, что напряжение, генерируемое термопарой прямо пропорционально ее температуре, то при нагревании рабочего спая, он генерирует больше напряжения, а при охлаждении — меньше.

Из чего состоит термопара.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Эксперт по дому
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: